More MCH Science Software

College Science Software BundleCollege Science Bundle: The three college level courses - General Chemistry, General Physics (calculus) and Organic chemistry, bundled together in one package.College Science Software Bundle

High School Science Bundle: The two high school level courses- Introductory Chemistry and General Physics (non- calculus), bundled together into one package. This bundle is very popular with High School and Home School students.Chemistry and Physics Software for High School and Home School

State Functions explained with multiple examples

Screen grab of multimedia explanation of State Functions in Physical chemistry textbook

Still from multimedia explanation of State Functions in Physical chemistry textbook

Section 2.2 of the Physical Chemistry textbook, States and State Functions, provides a wonderful definition for two terms that are often understood but difficult to define.  The use of simplistic terminology and multimedia examples help to clarify the meanings.

The key to understanding state functions, as pointed out in the text, is understanding the dependence of the individual variables on the pathway.  Some key variables worth exploring are:  temperature, mass, pressure, volume, energy and work.

The ultimate question in determining whether a variable is a state function is:  Do I care how I got the final value?

Let’s discuss the temperature drop as seen in the multimedia clip.  The addition of the ice cube lowered the overall temperature of the liquid by a fixed number.  Would the final temperature have been any different if it had been broken into three smaller ice cubes?  What if the three smaller ice cubes were added at different times?  What if it had been placed in a cooler instead of adding ice?  As long as the final temperature in each case is the same, it does not matter how the cooling was done.  Thus temperature is a state function.

Now consider mass, pressure and volume.  When weighing an object, does it matter how much it weighed one minute, one hour or a year ago?  What about pressure and volume?  Each of these variables relies only on the final state, not on the “pathway” and are examples of state functions.

The final two variables mentioned earlier are work and energy.  Before determining whether they are state functions, a vital question must be answered:  What is the difference between work and energy?  A simplistic definition of energy is the capacity to do work using the energy of motion, kinetic, or the conversion of stored energy, potential.  Work on the other hand is the actual use of energy to perform a specific task.

Again let’s use the multimedia example of the ladybug to compare them.  The lady bug has two different “pathways” to follow.  In each case, the final destination is the same but how does that relate to work and energy?  Let’s consider the journey in terms of energy.  Initially the ladybug is at rest or has potential energy but no kinetic energy.  In order to travel it must convert some of its potential into kinetic energy.  Some of the kinetic energy is then “converted” into work to travel from one destination to the other.  Once at the final destination, the ladybug is again at rest with a fixed amount of potential energy.

State functions in Physical Chemistry

Still from animation explaining State function in Physical chemistry (click to enlarge)

While the overall potential energy might be less than at the beginning, do you care how it lost that energy or only in the final amount that could be used in the future?   Again, the final value is all that is important and thus, energy is also a state function.

Work, though, is quite different.  When determining the final amount of work done, does it matter which pathway the ladybug took?  In each case, a different amount of energy was converted into work so each pathway has a different value.  Work therefore is not a state function and the pathway must be considered.

A useful comparison is destination vs. distance.  Destination, like energy is fixed while distance, like work, depends on the path traveled.

The example of the density of water at 25C and fixed pressure is a wonderful way to explore the application of state functions using an already familiar concept.  The multimedia, examples and easily understandable explanations really illustrate the meaning of state functions.

Written by: jollshar

Sharlene Jolley has authored 20 more articles.

I received my graduate degree in organic chemistry from Kansas State University and have been teaching undergraduate chemistry courses for over 15 years. I strongly believe that you are never too old or young to learn and appreciate science and have had students ranging in ages from 5 to 65. Along with my college classes, I regularly teach science in K-12 classes and for special interest groups.

One Response to State Functions explained with multiple examples

  • Thank you for your comments. I agree that visualization of science concepts is an essential part of understanding science. Students get nervous about equations, but it is through the equations that we develop our understanding of Nature. Computer simulations and interactions are a great way to overcome these problems and give a way to visualize what is happening and hopefully gives better insight.

Leave a Reply

Your email address will not be published. Required fields are marked *

Try our bestselling undergraduate Physical Chemistry courseware

Thermodynamics Module - Physical Chemistry
Thermodynamics module
Chapters 1 to 6 of Physical Chemistry - Laidler, Meiser, Sanctuary

Includes multimedia that opens on relevant pages and allows the student to visualize many of the concepts by varying parameters and plotting different graphs. Things students often have difficulty with, such as isothermal, isobaric, isochoric and adiabatic process, are clearly visualized.

Get it from: Thermodynamics Module - Physical Chemistry

Physical Chemistry - Laidler, Meiser, Sanctuary
Physical Chemistry textbook
by Laidler, Meiser, Sanctuary

This popular Physical Chemistry text book is now available in electronic format. We have preserved much of the material of the former hard copy editions, making changes to improve understanding of the concepts in addition to including some of the recent discoveries in physical chemistry. Many chapters have new sections and the coverage of several chapters has been greatly expanded.

Get it from: Physical Chemistry - Laidler, Meiser, Sanctuary

PChemistry Tips by Email

Don't miss out on Physical Chemistry tips & special offers sent via email

* indicates required

MCH on Twitter