More MCH Science Software

College Science Software BundleCollege Science Bundle: The three college level courses - General Chemistry, General Physics (calculus) and Organic chemistry, bundled together in one package.College Science Software Bundle

High School Science Bundle: The two high school level courses- Introductory Chemistry and General Physics (non- calculus), bundled together into one package. This bundle is very popular with High School and Home School students.Chemistry and Physics Software for High School and Home School

Redox reactions in electrochemistry and electrochemical cells

Standard Daniell Cell

Click to enlarge

Electrochemistry is the study of the changes that cause electrons to flow to create electricity. This flow of electrons is created by oxidation – reduction reactions (redox reactions); and these redox reactions are what takes place in electrochemical cells. Chapters 1,7 and 8 of the physical chemistry book tackle this subject in detail, so this post will provide an overview of the topic.

A brief explanation – an electrochemical cell is a device for harnessing the energy of a chemical process to do electrical work. There are two types of electrochemical cells: galvanic (voltaic) and electrolytic. In galvanic cells, spontaneous reactions occur whilst in electrolytic cells, non-spontaneous reactions take place.

Both cells contain electrodes, where the oxidation – reaction occurs. In both galvanic and electrolytic cells, oxidation occurs at the anode (electrons flow from the anode to the cathode) and reduction occurs at the cathode. Because redox reactions in galvanic cells are spontaneous, they are commonly used as batteries.

The energy is harnessed by placing the oxidation and reduction reactions in separate containers joined by an apparatus that allows electrons to flow. By contrast, for electrolytic cells (because they are non-spontaneous), an electrical energy is required to induce an electrolytic reaction.

If a bar of zinc is dipped into a solution of zinc sulphate, some zinc ions (Zn²⁺) dissolve, leaving two electrons each on the metal. This causes a separation of charge and eventually equilibrium is achieved.

An electrical double layer forms, which consists of electrons on the metal surface and zinc ions immediately adjacent to it. At this stage the tendency to dissolve is exactly matched by the tendency of zinc ions to deposit, which is caused by the charge separation. This means that there is a potential difference between metal and solution but it cannot be measured. However, if we can construct a cell using two half-cells, then we can overcome this issue.

Let’s use this example:  zinc electrode in zinc sulphate solution and copper electrode in copper sulphate solution. By preparing two half-cells, these half-cells are designed to contain the oxidation half-reaction and the reduction half-reaction separately. The half-cell called the anode is the site at which oxidation of zinc occurs:

Zn (s) → Zn²⁺ (aq) + 2e⁻

During the oxidation of zinc, the zinc electrode will slowly dissolve to produce Zn ions (Zn²⁺) and enter into the solution containing zinc and sulphate ions.

Likewise, the half-cell called the cathode is the site at which reduction of copper occurs:

Cu²⁺ (aq) + 2e⁻ → Cu (s)

Reduction of copper ions (Cu²⁺) takes place with copper atoms accumulating on the solid copper electrode.

Half-cell reactions however, do not take place unless they are “linked”. For an oxidation reaction to occur there must be a corresponding reduction reaction that is linked. As the oxidation – reduction reaction occurs cations (Zn²⁺) from the anode migrate via the salt bridge to the cathode, while the anions (SO₄²⁻) migrate in the opposite direction. A salt bridge links the two electrolytes, where it allows the migration of ions in both directions to maintain electrical neutrality.

Electrochemical cells give valuable thermodynamic information. Many of the chemical processes occurring around us involve the movement of charged ions in liquids, as well as of electrons in metals. Many corrosion processes arise when aqueous electrolytes are in contact with steel, copper or iron, and battery-powered appliances are common.


Written by: chemmum

Shaliza Dewa has authored 11 more articles.

I hold a Ph.D. in Chemistry and a B.Sc. in Biochemistry from the University of Sussex, England. I am a professional stay-at-home mom to three kids. I love the wonderful world of Chemistry and its practicality. Prior experiences in research and industry will be the stimulus for helping others in their understanding of Chemistry.

One Response to Redox reactions in electrochemistry and electrochemical cells

Leave a Reply

Your email address will not be published. Required fields are marked *

Try our bestselling undergraduate Physical Chemistry courseware

Thermodynamics Module - Physical Chemistry
Thermodynamics module
Chapters 1 to 6 of Physical Chemistry - Laidler, Meiser, Sanctuary

Includes multimedia that opens on relevant pages and allows the student to visualize many of the concepts by varying parameters and plotting different graphs. Things students often have difficulty with, such as isothermal, isobaric, isochoric and adiabatic process, are clearly visualized.

Get it from: Thermodynamics Module - Physical Chemistry

Physical Chemistry - Laidler, Meiser, Sanctuary
Physical Chemistry textbook
by Laidler, Meiser, Sanctuary

This popular Physical Chemistry text book is now available in electronic format. We have preserved much of the material of the former hard copy editions, making changes to improve understanding of the concepts in addition to including some of the recent discoveries in physical chemistry. Many chapters have new sections and the coverage of several chapters has been greatly expanded.

Get it from: Physical Chemistry - Laidler, Meiser, Sanctuary

PChemistry Tips by Email

Don't miss out on Physical Chemistry tips & special offers sent via email

* indicates required

MCH on Twitter