More MCH Science Software

College Science Software BundleCollege Science Bundle: The three college level courses - General Chemistry, General Physics (calculus) and Organic chemistry, bundled together in one package.College Science Software Bundle

High School Science Bundle: The two high school level courses- Introductory Chemistry and General Physics (non- calculus), bundled together into one package. This bundle is very popular with High School and Home School students.Chemistry and Physics Software for High School and Home School

Digging into Phase Diagrams & Cooling Curves

Thermal Analysis

Thermal Analysis to determine a phase diagram (click to enlarge)

Condensed Binary Systems and  Thermal Analysis  are described in sections 6.4 and 6.5 of the Physical Chemistry textbook.

While most of us may not realise it, phase and phase transformations are ubiquitous in everyday life. The most simplistic illustration is a saucepan filled with boiling water – here the bubbles of steam formed by the water changes from liquid to vapour phase.

During snow and icy conditions, salt is spread on the roads to lower the melting point of the water by changing its composition and causing a phase change. Bubbles rising in a glass of beer signify a change in phase, i.e. gases dissolve in the beer forming a separate phase.

Phase Diagrams

Phase diagrams provide valuable information about melting, casting, crystallization, and other phenomenon. Phase equilibrium diagrams are plots of the relationship between temperature, pressure and composition.

Phase diagrams and phase transformation are used in the understanding of how microstructure evolves and their properties in relation to manufacturing and engineering processes. The details of the thermal history controls the way phase transformation takes place. The processing of most materials involves a thermal history such as the thermal history of solidification which is cooling from a high temperature process.

Using Cooling Curves to Construct Phase Diagrams

The cooling curve method is one of the oldest and simplest methods to determine phase diagrams and phase transition temperatures. This is achieved by recording temperature (T) of a material versus time as it cools from its molten state through solidification (at constant pressure).

Whenever a phase change takes place in a metal or alloy, the total energy content changes because cooling or heating is the process of evolution or absorption of heat.

Cooling Curve of a pure metal

Click to enlarge

Supposed you allow a pure metal to cool down until it has all solidified (i.e. cooled under near equilibrium conditions from the liquid state), plotting its temperature as a function of time, the resulting cooling curve will show a plateau (B-C); this is also known as thermal arrest. The plateau corresponds to the beginning (at point B) and end of solidification (at point C).

Sometimes the liquid may cool to a temperature below its freezing point before crystallization occurs and this is called supercooling (this is explained in the Physical Chemistry book on page 6-12).

While the process of solidification begins, the temperature drops and remains there until solidification is complete (C to D).

Most alloys will solidify from the molten state over a range of temperatures.  The cooling curve will thus have liquid-solid transition points at two different temperatures representing the beginning and end of solidification.

Eutectic Alloys

Pb-Sn alloy is a good example of a eutectic alloy system. Eutectic is a ‘term’ used to describe two components which are completely soluble in each other in the liquid state, but only partially soluble in the solid state.

In a eutectic system, the “eutectic alloy” composition has the lowest melting point in the system. It is lower than the melting points of either of the pure components.  Figure 6.16 (below) in the Physical Chemistry book illustrates the gold-silicon system which is another example of a eutectic system.

Eutectic system

Click to enlarge

Many eutectic alloy systems have been found to be useful as solders. A typical old-fashioned solder is Pb-Sn comprising 40% lead and 60% tin. This ‘combination’ is close to the idealized eutectic composition having a low melting point (comprising 38% lead and 62% tin). Because this alloy system melts and freezes cleanly over a very limited temperature range, they have been found to be useful for electrical work.

In determining the phase diagrams for alloys (in which solid-to-solid transformations take place) other methods are used instead of the cooling curve method of thermal analysis.  That is because solid state transformations are often sluggish and the heat change is too small to be readily detected by cooling curves.

Written by: chemmum

Shaliza Dewa has authored 11 more articles.

I hold a Ph.D. in Chemistry and a B.Sc. in Biochemistry from the University of Sussex, England. I am a professional stay-at-home mom to three kids. I love the wonderful world of Chemistry and its practicality. Prior experiences in research and industry will be the stimulus for helping others in their understanding of Chemistry.

Leave a Reply

Your email address will not be published. Required fields are marked *

Try our bestselling undergraduate Physical Chemistry courseware

Thermodynamics Module - Physical Chemistry
Thermodynamics module
Chapters 1 to 6 of Physical Chemistry - Laidler, Meiser, Sanctuary

Includes multimedia that opens on relevant pages and allows the student to visualize many of the concepts by varying parameters and plotting different graphs. Things students often have difficulty with, such as isothermal, isobaric, isochoric and adiabatic process, are clearly visualized.

Get it from: Thermodynamics Module - Physical Chemistry

Physical Chemistry - Laidler, Meiser, Sanctuary
Physical Chemistry textbook
by Laidler, Meiser, Sanctuary

This popular Physical Chemistry text book is now available in electronic format. We have preserved much of the material of the former hard copy editions, making changes to improve understanding of the concepts in addition to including some of the recent discoveries in physical chemistry. Many chapters have new sections and the coverage of several chapters has been greatly expanded.

Get it from: Physical Chemistry - Laidler, Meiser, Sanctuary

PChemistry Tips by Email

Don't miss out on Physical Chemistry tips & special offers sent via email

* indicates required

MCH on Twitter